PCB Designers Notebook: Embedding Components, Part 2


Reading time ( words)

Note: Part 1 of this column appeared in the June 2017 issue of The PCB Magazine.

Technology and processes for embedding capacitor and inductor elements rely on several unique methodologies. Regarding providing capacitor functions, IPC-4821 defines two methodologies for forming capacitor elements within the PCB structure: laminate-based (copper-dielectric-copper) or planar process and non-laminate process using deposited dielectric materials.

Distributed (planar) capacitors

Considered the simplest solution and commonly used to replace discrete power supply decoupling capacitors the planar capacitors utilize closely spaced power and ground planes separated by a thin dielectric layer. The dielectric can be a layer of the glass-reinforced epoxy material, a thin layer of non-reinforced polymer, or a polymer sheet material filled with ceramic powder. This technique will provide significant capacitance and delivers very low inductance. The capacitance range for planar capacitors is 1pF to 1mF, dependent on the dielectric constant, material thickness and area.

Because the planar capacitance is proportional to the dielectric thickness between the power and ground planes, thin dielectrics are preferred. This will increase planar capacitance while reducing planar spreading inductance and minimizes overall board thickness. The reduction of planar spreading inductance also results in a lowering the impedance path while increasing the effectiveness of discrete capacitances.

The total capacitance of the power and ground pair is determined by the effective common (overlapping) area of the copper electrodes. This area, times the capacitance density, represents the total capacitance.

To read this entire article, which appeared in the June 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

This Month in Design007 Magazine: HDI Design, Landless Vias, VeCS, and More

11/09/2020 | I-Connect007 Editorial Team
Andy Shaughnessy, Happy Holden, and Dan Feinberg recently met with James Hofer, general manager of Accurate Circuit Engineering, to discuss via design techniques and via reliability from the fabricator’s viewpoint. As Hofer explained, even with open lines of communication between the designer and the board shop, there are plenty of variables to contend with regarding proper via design, especially when working with PTFE materials.

Real Time with… Altium Live Europe 2020: Rick Hartley’s Secrets of PCB Optimization

10/29/2020 | Pete Starkey, I-Connect007
As Lawrence Romine said in his introduction, “There’s that moment when you sit in the crowd and hear Mr. Rick Hartley speak that you know you’ve arrived in PCB design.” With 50 years in the industry focused on circuit and PCB design—and as a specialist in EMI, noise, and signal integrity issues—Rick Hartley was invited to talk about PCB optimization. Pete Starkey provides an overview of the presentation.

Real Time with… AltiumLive Europe 2020: Eric Bogatin’s ‘Unlearning’ Keynote

10/27/2020 | Pete Starkey, I-Connect007
Pete Starkey admits to not being a Star Wars freak, but he was impressed by Yoda’s iconic wisdom and philosophy and intrigued by his advice that, “You must unlearn what you have learned.” Here, he describes how attending Dr. Eric Bogatin’s keynote at the AltiumLive Europe 2020 Virtual Summit was an enlightening experience.



Copyright © 2020 I-Connect007. All rights reserved.