RUSH PCB Unveils 10-Layer HDI Design and Manufacture Capabilities


Reading time ( words)

Rush PCB Inc. now offers the design and manufacturing of multilayer HDI PCBs of 10 layers and more.
 
In making the announcement, CEO Akber Roy stated, “To achieve very high-density interconnection, designers at Rush PCB Inc. use what we know as Every Layer Interconnect (ELIC) technology. This is a method wherein each layer has its own copper-filled laser-drilled microvias. When stacked up, it provides the opportunity for dynamic connections between any two layers in the PCB. Not only does this offer an increased level of flexibility, but it also maximizes circuit density.”
 
Roy adds that RUSH designers have taken up the additional complex challenges in routing with via-in-pad (VIP) and by employing blind and buried vias. They laser-drill via holes and filled them with conductive copper paste. 
 
“Before finalizing the design of multi-layer PCBs, our designers confirm the structure of the circuit board primarily based on the scale, physical size, and the requirements of electromagnetic compatibility (EMC)," said Roy. "Our designers use 10 layers of material, and in this stack-up design have decided that the placement of the innerlayer and the manner of distribution of different signals in these layers of the multilayer PCB. This careful planning and determination of the stack-up design beforehand save the user much time and effort in wiring and production later.”
 
Roy added, “Apart from very fine traces in the foil pattern, HDI requires sequential build-up (SBU) and microvias drilled with lasers. SBU technology is used to fabricate HDI boards. The HDI layers are usually built up from a traditionally manufactured double-sided core board or multilayer PCBs.”
 
About RUSH PCB Inc.
 
Rush PCB Inc., is a printed circuit design, fabrication and assembly company located in the heart of Silicon Valley. Rush PCB engineers are experts at handling small production runs and prototypes as well as full-scale production, using both manual and automated SMD assembly processes when appropriate. RUSH can execute single and double-sided placement for all SMT component types, including BGA, UBGA, QFP, QFN, PLCC, SOIC, POP, and various other small chip packages. They can efficiently handle passive chip packages as small as 0201s, and active components with a pitch of 8 mils or more. For more information, click here.

Share




Suggested Items

Pulsonix Collision Avoidance to Bring Mechanical Capabilities Into ECAD

05/19/2022 | I-Connect007 Editorial Team
The I-Connect Editorial Team recently spoke with Bob Williams, managing director of Pulsonix. He discussed some of the new features in the upcoming version of the Pulsonix PCB design tool, Version 12, including collision avoidance and other 3D options that allow certain MCAD functions within the ECAD environment.

A Textbook Look: Signal Integrity and Impedance

05/18/2022 | Pete Starkey, I-Connect007
Believing that I knew a bit about signal integrity and controlled impedance, I was pleased to take the opportunity to connect with an educational webinar that I hoped would extend my knowledge. In the event I was surprised at how little I actually knew, and the webinar was an excellent learning opportunity. The webinar was introduced and expertly moderated by Anna Brockman of Phoenix Contact in Germany.

Designing in a Vacuum Q&A: Carl Schattke

05/11/2022 | Andy Shaughnessy, Design007 Magazine
Not long ago, I caught up with Carl Schattke, CEO of PCB Product Development LLC and a longtime PCB designer, for his thoughts on “designing in a vacuum.” As Carl points out, if you follow PCB design best practices, knowing the identity of your fabricator is not a “must-have.” He also offers some communication tips for discovering the information you do need, including one old-fashioned technique—just asking for it.



Copyright © 2022 I-Connect007. All rights reserved.