Development of Flexible Hybrid Electronics


Reading time ( words)

Introduction

Flexible hybrid electronics (FHE) refers to a category of flexible electronics that are made through a combination of traditional assembly process of electronic components with high-precision ink printing technologies . By integrating silicon components with printed inks and flexible substrates, FHE will revolutionize the IoT and wearable industries. With FHE, designers can create a heterogeneous electronic system that can be fully integrated with different sensors, lighter in weight, more cost effective, more flexible and conforming to the curves of a human body or even stretchable across the shape of an object or structure—all while preserving the full functionality of traditional electronic systems.

The FHE industry is still in the early stages of development, and a variety of design, material, assembly and reliability issues need to be addressed. For example, electrical interconnections formed with conductive adhesives may not be as conductive or reliable as compared to conventional solder assembly. Typical polymer-based conductive inks are not as conductive as the etched copper used to make circuit boards and they are mostly not readily solderable. Additionally, commercially available stretchable thermoplastic-based film substrates have relatively low heat resistance and cannot withstand the current lead-free reflow process temperatures.

This article will present a hybrid manufacturing process to manufacture FHE systems with a two-layer interconnect structure utilizing screen printing of silver conductive ink, filled microvias to connect ink traces at the different layers, and use of the traditional reflow process to attach the semiconductor chips to the printed substrates.

Experimental

This study is to convert a rigid multilayer wearable development platform into a flexible one using printed conductive ink and flexible substrate. The current rigid platform contains two active semiconductor components and dozens of passive devices. The largest component is the microprocessor chip. Figure 1 shows the footprint for the microprocessor chip. It is an LGA package with 8X8 array and 64 I/Os. The pad size is 250 mm and the pitch is 400 mm, which leaves the space between pads at 150 mm.

To read this entire article, which appeared in the July 2019 issue of Design007 Magazine, click here.

Share




Suggested Items

Material Conservation: The PCB Designer's Role

09/01/2022 | I-Connect007 Editorial Team
During these times of supply chain uncertainty, many product developers are considering new ways to conserve materials—from laminates to components, layer reduction, and everything in between. Barry Matties and Happy Holden recently spoke with Alun Morgan, president of EIPC and technology ambassador for Ventec, about material conservation strategies for today’s PCB designers and design engineers. Alun explained why this may be the perfect time to educate PCB designers about conserving materials: When a model is broken, the people involved are much more open to new ideas.

Designing for Material Conservation Means Changing Attitudes

08/29/2022 | I-Connect007 Editorial Team
It makes a lot of sense: During times when the supply chain is stretched to the breaking point—and the last few years certainly qualify—what if PCB designers created boards that used fewer components and less laminate? Do PCBs still have to be 0.062" thick? Why not reduce layer count while they’re at it? Andy Shaughnessy and Nolan Johnson spoke with I-Connect007 columnist Dana Korf about the idea of designing a PCB with material conservation in mind. Is it a great new idea, or are we opening a whole new can of worms and a separate group of problems?

Design Tips for Lowering Costs of Fab and Assembly

08/25/2022 | Cherie Litson, CID+, Litson1 Consulting
This is the million-dollar question of every project: How can I cut the cost of the PCB? There are about a thousand answers to this question. There are a few simple guidelines that everyone can follow to reduce costs. I talk about them in my IPC CID and CID+ courses. Designers, fabricators, and assemblers talk about them in a variety of articles. Some professionals who have published some great articles on cost-saving strategies include Tara Dunn, Happy Holden, Chris Church, Kella Knack, Judy Warner, Julie Ellis, Lars Wallin, and many, many others.



Copyright © 2022 I-Connect007. All rights reserved.