Insertion Loss Performance Differences Due to Plated Finish and Circuit Structure


Reading time ( words)

Abstract

Many different final plated finishes are used in the PCB industry, each with its own influence on insertion loss. The impact of an applied finish on insertion loss generally depends on frequency, circuit thickness, and design configuration. This article will evaluate the effects of final plated finishes on the insertion loss of two popular high-frequency circuit design configurations: microstrip transmission-line circuits and grounded coplanar-waveguide (GCPW) transmission-line circuits.

Data will be presented for loss versus frequency for six different plated finishes commonly used in the PCB industry, and opinions will be offered as to why the loss behavior differs for the different plated finishes and for the different circuit configurations. Because the insertion loss of high-frequency circuits also depends on substrate thickness, circuits fabricated on substrates with different thicknesses will be evaluated to analyze the effects of substrate thickness on insertion loss using different plated thicknesses.

This article will also explore many different aspects of the final plated finishes on PCB performance. The nickel thickness in electroless nickel immersion gold (ENIG) finishes normally has some variations; data will show the effects of these variations on the RF performance of a PCB. Immersion tin is often used to minimize thickness variations and analysis will show the effects on RF performance for different thicknesses of immersion tin. The effects of plated finish on PCB performance can vary widely over frequency, and those effects will be shown for a wide range of frequencies from 1 to 100 GHz.

Insertion Loss Overview

The insertion loss of a high-frequency PCB circuit can decrease the usable signal levels of a system, whether in a receiver or a transmitter. Details on insertion loss can be found in a previous IPC paper, although a simple review of insertion loss might be helpful before examining the data on PCB final plated finishes. The total insertion loss is comprised of four loss components.

 

To read the rest of this article, which appeared in the September 2019 issue of Design007 Magazine, click here.

Share




Suggested Items

I-Connect007 Editor’s Choice: Five Must-Reads for the Week

08/12/2022 | Andy Shaughnessy, I-Connect007
There was some good news this week, as Republicans and Democrats managed to cooperate long enough to pass the CHIPS Act. Members of the House and Senate don’t usually act until they get worried about being voted out of office, so pardon me if I’m not ready to sing “Happy Days Are Here Again” just yet. But this is still really good news; the politicians are on the record now, and we can hold them accountable.

IPC's I-Connect007 Acquisition Update With John Mitchell

08/05/2022 | Nolan Johnson, I-Connect007
Editor Nolan Johnson speaks with I-Connect007 Publisher Barry Matties and IPC President and CEO John Mitchell about IPC's acquisition of the publishing company, and what this means to I-Connect007's readers.

I-Connect007 Editor’s Choice: Five Must-Reads for the Week

08/05/2022 | Nolan Johnson, I-Connect007
The Top 5 list this week contains industry analysis from IPC’s Shawn DuBravac, news on the passage of the U.S. “CHIPS Plus” bill, new materials from Ventec, news about a fab for sale, and a chemistry company completing their acquisition, plus a brand new book in the I-Connect007 eBooks series.



Copyright © 2022 I-Connect007. All rights reserved.