The Institute of Circuit Technology Autumn Seminar


Reading time ( words)

Further, Goosey gave an introduction to the PLATIRUS Project—Recovery of Critical Raw Materials from WEEE—funded by the European Commission as part of the Horizon 2020 Research and Innovation programme. His company, Env-Aqua Solutions Ltd., was one of 12 partners representing industry, research, and academic organisations across the value chain. The objective of the PLATIRUS Project was to help bridge the supply-demand gap of PGMs in Europe by developing and introducing novel secondary raw materials to the recovery supply chains of automotive catalysts, mining, and electronic wastes. The project aimed to develop a miniaturised recovery process for platinum-group metals based on selection and optimisation of a cost-effective combination of advanced hydro-metallurgy, iono-metallurgy, supercritical CO2 extraction, solvo-metallurgy, pyro-metallurgy, hydro-metallurgy, and electro-winning technologies, and to upscale the process to industrially relevant levels.

Apart from the obvious advantages of bridging the supply-demand gap and reducing Europe’s dependence on global PGM supply chains, the PLATIRUS Project offered potential benefits in reducing energy costs and environmental impacts as well as providing solutions requiring lower capital investment than centralised refineries and maximising the exploitation of local waste sources. The work of the PLATIRUS Project was due to be completed and the final report published in October 2020.

ICT-1003-FrankFerdinandi.jpgFrank Ferdinandi, director of Azurion Technology described an environmentally friendly surface finish for PCBs, which was effectively an ultra-thin fluorochemical conformal nano-coating deposited and polymerised in-situ by a plasma process. Where the coating was deposited on copper, it offered long-term protection against oxidation, but the copper remained solderable by standard techniques. Elsewhere on the PCB, it provided a durable waterproof finish. Ferdinandi showed samples of boards coated more than 10 years previously, using an early version of the finish. The copper remained bright and tarnish-free, but still easily solderable. There had been a programme of continuous development, and the current finish represented the third iteration.

Ferdinandi explained that the new technology outperformed existing surface finishes in key areas and provided major advantages for PCB protection and post-processing. Its functional benefits included excellent long-term protection against oxidation together with a solder-through capability compatible with current reflow processes for lead-free and leaded solders. After soldering, its non-wetting properties across the complete surface gave circuits increased resistance to aggressive environments, resulting in longer product life with no rework issues. A major environmental benefit was that since no water was used, the effluent associated with traditional surface coating processes was eliminated and health and safety issues were significantly reduced. Plasma deposition was carried out in a single chamber, and in-situ cleaning was possible. The system could be semi-automated for high throughput.

Solderability, solder joint reliability, and electrical properties had been extensively studied and compared favourably with immersion silver, HASL, OSP, ENIG, electroplated nickel-gold, and immersion tin. Although previous commercialisation programmes had shown only limited success, there was currently renewed interest—particularly from China—where the opportunity to reduce water consumption was especially attractive.

ICT-1003-DavidWestwood.jpgThe team behind Rainbow Technology Systems introduced a specialised surface-cleaning technology to the printed circuit manufacturing industry over 30 years ago. Their system of contact sheet-cleaning and web-cleaning solutions, based on rubber pick-up rollers lifting minute particles from surfaces and transferring them to an adhesive roll, became the industry standard. David Westwood, Rainbow’s sales and marketing manager, explained how this proven technology maintained its relevance and impact in the advancement and development of ultra-fine-line circuitry.

Aided by a series of animations, and frequently wielding a small hand-held pick-up roller and a pad of adhesive sheets for dramatic effect, Westwood demonstrated the potential effect of dust-related imaging defects on manufacturing yield. His illustration of typical dust and debris on a design of the 1980s with 300-micron track and gap included particles varying in size, including 75–100 microns, 50 microns, 25–30 microns, and down to 15 microns. At this level of design rule, even if the efficiency of cleaning was only 98%, any issues associated with the remaining 2% could be touched in by a skilled operator with a steady hand. It’s not so for current designs with track and gap trending towards 15–20 microns!

The KSM Superclean division of Rainbow Technology Systems had stayed ahead of the technology and was confident that contact cleaning remained the most effective method of removing debris from surfaces. Roller and adhesive technologies had been developed that enabled greater efficiency of cleaning to 99.9% at finer particle sizes down to the 0.5–3-micron critical levels. Harder rollers were available with precision surface finishes, silicone-free, and static-dissipating. And the adhesive rolls were based on clean-room film materials. Westwood believed that contact cleaning would continue to be the most effective means for the permanent removal of surface debris as design technology progressed from fine-line to ultra-fine line.

Cobley brought the seminar proceedings to a close, thanking the audience for their attention and the presenters for generously sharing their knowledge. A special thanks went to Bill Wilkie for another superbly organised learning and networking event.

Share




Suggested Items

EIPC Technical Snapshot: Novel Laser-based Manufacturing Processes in Automotive Electronics

09/22/2022 | Pete Starkey, I-Connect007
“Summer is over, now it's back to work!” This was the opening line of the invitation to the 18th EIPC Technical Snapshot webinar, Sept. 14, following the theme of advances in automotive electronics technology, introduced and moderated by EIPC President Alun Morgan. The first presentation, entitled "The fully printed smart component—combining additive manufacturing and sensor printing," came from Jonas Mertin, a thin-film processing specialist at the Fraunhofer Institute for Laser Technology.

Plating on Silver: What’s Old is New Again

07/07/2022 | Denis Jacques, Technic Inc.
About three decades ago, immersion silver, a nitrate-based process, gained a lot of market share in the world of PCB final finishes. More economical than ENIG, flat, solderable, and conductive, it had everything going for it—everything but corrosion resistance in a harsh environment, that is. Champagne voids were also an issue, along with line reduction. But the worst drawback, the characteristic that made the part short over time, was creep corrosion. A build-up of copper sulfide salt that grows in contact with a sulfur-rich environment, heat, and moisture resulted in failures in the field. This was enough to scar the process for good.

EIPC Summer Conference 2022: Day 2 Review

06/29/2022 | Pete Starkey, I-Connect007
Örebro, Sweden on June 15 brought a bright and early start to Day 2 of the EIPC Summer Conference for those who had enjoyed the previous evening’s networking dinner, but had resisted the temptation to over-indulge or to carry on their long-awaited catch-up conversations with old friends into the small hours. All but a few were in their seats for 9 a.m., awake and attentive for Session 4 of the conference, on the theme of new process technologies, moderated by Martyn Gaudion, CEO of Polar Instruments.



Copyright © 2022 I-Connect007. All rights reserved.