Hitachi Chemical DuPont MicroSystems, Ltd.: Regarding the Decision to Maintain Two Japanese Granted Patents on Polyimide Precursor Resin Composition


Reading time ( words)

Hitachi Chemical DuPont MicroSystems, Ltd. (hereinafter “the company”) announces that the company was granted permission to maintain the Japanese patents (Patent No. 6288227 and Patent No. 6206446; hereinafter “the patent group”) on polyimide precursor resin composition essential for manufacturing high heat-resistant, bendable flexible substrates on October 11 and November 25, respectively, in 2019 after examination by the Japan Patent Office in response to an opposition to the patent group filed by a third party.

The rapid growth of the Internet of Things (IoT) is expected to further expand the demand for flexible organic EL and Micro-LED display panels with the spread of bendable devices, including next-generation smartphones, e-Paper, and digital signage.

To manufacture flexible panels, plastic substrates are placed on glass substrates, with pixel circuits and display layers formed on top, while forming thin film transistors (TFT), one part of the pixel circuits, requires high temperature processing. However, this process could not be applied to conventional plastic substrates due to their poor heat resistance. Technologies previously used to tackle this problem involved the complicated process of forming TFTs on glass substrates, followed by separating the pixel circuits from the glass substrates and reforming them on plastic substrates. Flexible panel manufacturers had struggled to overcome this challenge for many years.

The company’s technology is related to liquid polyimide precursor resin composition for forming flexible device substrates that gives plastic substrates both toughness* and heat resistance. In addition to heat resistance, this technology offers solutions to realize the conflicting properties of “excellent adhesion to glass substrates while forming pixel circuits” and “easy release from glass substrates after forming pixel circuits,” thereby allowing flexible device substrates to be formed using a simpler and more efficient process.

The company will take full advantage of the patent group to actively promote external collaboration, including out-licensing.

*Material’s high viscosity or resistance to damage caused by external force

Share

Print


Suggested Items

Flex Standards Update With Nick Koop

11/21/2019 | Andy Shaughnessy, Design007 Magazine
This month, I interviewed Nick Koop—director of flex technology at TTM Technologies, a veteran “flex guy” and instructor, and a leader of several IPC flex standards committees. Nick provides an update for the committees he’s involved with and discusses some of the challenges that he sees as more designers enter the world of flex.

Selecting the Proper Flex Coverlayer Material

09/06/2019 | Dave Lackey, American Standard Circuits
Coverlayers are polymer materials used to cover and protect the copper traces of the flex circuit product. There are a number of different options available for protecting the circuits, and they serve different design requirements in terms of cost, performance, and flexural endurance optimization. When specifying the choice, it is critical to call out not just the type of coverlayer material but also the thickness requirement. This can be very important in certain types of constructions, especially when a flex circuit will experience dynamic flexing during use.

The Shape of Things to Come: Curved, Flexible, Stretchable, and Three-Dimensional Electronics

12/27/2018 | Corné Rentrop, HOLST CENTRE
The seamless integration of electronics into flexible, curved, and even stretchable surfaces is being requested for several markets, such as automotive (dashboards, lighting, sensors), smart buildings (lighting facades, air quality, solar panels), medical (health patches, X-ray, analysis), and smart clothing (position tracking, sports).



Copyright © 2020 I-Connect007. All rights reserved.