3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?
I have been following the advances in 3D additive circuit manufacturing for the past six years, from post-conception to fast-turn prototype production, and from simple printing of conductors on a dielectric to being able to make a loaded circuit board complete with printed resistors and capacitors. In terms of volume, we have gone from very low volume prototypes to moderate volume production circuits. It seems that the rate of progress has accelerated significantly.
We are progressing from the production of a standard circuit board using only 3D printing to printing both the circuit and some components directly onto a base unit. For example, a circuit assembly designed to measure and report temperature can be printed directly onto the component or cylinder that generates the heat. Antennas can be printed directly into a helmet or onto a transmitting/receiving device, and connectors can be printed instead of mounted and connected.

Today, fully functional PCBs with integrated circuit components and other embedded semiconductor devices can be created with 3D printers. The more advanced 3D printing equipment and consumables can produce resolution near micron-level. More than one type of material can be deposited at the same time, which allows for 3D printing of integrated circuits because the co-deposition of conductors and semiconducting materials must be done at the same time. Applications, such as semiconductor chip fabrication, require the integration of different materials simultaneously.
3D additive manufacturing of electronic devices may be at the point, both technically and commercially, where standard circuit board manufacturing was in the ‘50s and ‘60s. That’s when we began the transition from chassis-mounted, hard-wired vacuum tube sockets and point-to-point hand-soldered components to circuit boards with discrete transistors and passive components.
3D-Printed Electronics Webinar
Recently, I was invited to attend a detailed and broadly informative webinar “The Strength of 3D-Printed Electronics” by nScrypt, which covered the status and advances in the use of 3D printing for electronic device design and manufacture.
nScrypt is an Orlando-based company founded in 2002 that focuses on 3D printing. Here’s what I learned about the company: “nScrypt provides tools and processes for next-generation electronic products. Their Factory in a Tool (FiT) has the ability to make complete products on a single platform by using multi-material and multi-processes using precision motion and control. Existing nScrypt machines are made for the existing factory floor where precision processes matter in high volume or stand-alone for personalized products manufactured using digital files. nScrypt tools are made to run 24/7/365 manufacturing products, even when you sleep.”
This webinar focused on the current and future uses of 3D additive manufacturing. I found the speakers to be very informative as they discussed their experience with a broad range of 3D additive manufacturing capabilities, and what they expect as they plan ahead. Here’s what I learned from each of the speakers.
James Zunino
James Zunino is co-founder of the U.S. Army’s additive manufacturing community of practice and a materials engineer at the Combat Capabilities Development Command Armaments Center (CCDCAC) in New Jersey.
He talked about transformative manufacturing techniques for novel printed armament technologies in the areas of additive manufacturing, 3D printing of polymers and metals for flex hybrid electronics, smart manufacturing, automation, robotics, and digital manufacturing. These advanced manufacturing capabilities, James said, are now being used at 18 sites in the United States. Some of the current system efforts include munition power sources, ammunition and warheads, instrumentation for training and simulation, armaments and munitions, remote weapons, and special operations.
My overall impressions are that 3D processes are being used by the military to significantly improve the capability of weapons and provide power solutions with the goal to print as much as possible.
Dr. Kenneth Church
Dr. Kenneth Church is the CEO of nScrypt and detailed current and future efforts in printing electronics. Take the evolution of the smartphone as an example, he said.

The latest phones are full of “stuff,” such as glue and solder—much of which can be eliminated with additive manufacturing that uses printed adhesives, solder, printed antennas, and components. Ken demonstrated with a four-element-phased array antenna complete with an RF structure—a relatively complicated 3D-printed device.
He also mentioned that, as a partner with NASA, they now have a 3D-printing device used on the International Space Station.
Dr. Amanda Schrand
As a senior engineering group leader for the resilient additive development program at Eglin Air Force Base, Dr. Amanda Schrand spoke about the use of 3D printing for the survivability of printed hybrid electronics. As part of the Airforce Research Lab, her program also works with all branches of the military. She spoke about proof of concept and seemed to be pleased with the success of printed antennas. They use several 3D printing devices, including the nScrypt printer.

Erik Handy
Erik Handy represents SI2 Technologies, which designs, develops, and manufactures RF/microwave and sensor systems for military air, land, and sea, as well as space applications using 3D printing. SI2 uses commercially available and designs its own new materials. Erik discussed considerations for selecting printable materials. Regarding electrical conductor materials, for example, to maximize conductivity for high power handling while minimizing surface roughness for RF efficiency, dielectrics must minimize the loss tangent and provide a dielectric constant.
Erik also spoke about the challenges associated with co-printing dissimilar materials such as processing temperature mismatches, layer to layer adhesion, and more. Then, he gave examples of applications for printed RF systems.
Curtis Hill
Curtis Hill works at NASA’s Marshall Space Flight Center in Huntsville, where one area of focus is using 3D printing in space manufacturing—both on the ISS and “beyond,” with “beyond” referring to inhabiting the moon and, by 2035, Mars. He spoke about the development of flexible sensors that can monitor astronaut health using 3D additive electronics. NASA is also developing the ability to print various metals and its own inks.

Dr. Mark Mirotznik
A professor of electrical and computer engineering at the University of Delaware, Dr. Mark Mirotznik discussed the progress and challenges of 3D-printed electronics for RF devices and systems. He asked, “Since we have gotten so good at making circuits that are low cost and high volume, then why do we need 3D additive?”

One reason, he said, might be the need for small-volume labor-intensive devices and, of course, getting a replacement part in an area such as the ISS where it might take months to have it delivered. His team, however, is focusing on a far more interesting reason: Having the ability to make things where there is no other way to do so. Think about no longer being bound to two-dimensional circuits.

Another reason centers on the ability to use far more advanced materials, higher-conductivity inks, printable thermoplastics, and pastes with a range of electric and magnetic properties. Soon, 3D-printed circuits will enable capabilities that today’s standard circuit fabrication just cannot do. Mark discussed the ability of 3D printing to generate “smart munitions”—ammunition with built-in sensors—as well as other interesting topics.
Dr. Paul Parsons
Dr. Paul Parsons, director of materials research at DeLUX Advanced Manufacturing, was the final speaker. He also works with the University of Delaware on the strength of 3D-printed electronics for RF applications. To begin, he noted that until recently, 3D printing of electronics had been dominated by single material systems, which require parts to move and then deposit dissimilar materials such as dielectrics and conductors. This makes it difficult to incorporate internal features.
However, the emergence of multilateral systems enables the fabrication of complex printed circuit or RF structures within a single system. Dr. Parsons turned his focus to the various types of 3D-printed circuits, which can greatly increase functionality. He noted that being able to produce and seamlessly integrate the connectors into the circuit allows for more complicated RF structures, and then he concluded that it’s critical for the future needs to have materials development.
Conclusion
The webinar concluded with a detailed and interesting Q&A session, and I left with a strong feeling that 3D-printed electronic manufacturing not only has advanced significantly in the past few years, but the rate of advance is increasing exponentially.
These presentations were so loaded with information on both present and future uses of 3D additive circuit and device production, and all I can do here is give you a few highlights. The entire webinar is about two hours and can be viewed online [1].
Also, I have recently seen some companies announce other advances in both equipment and consumables, so I look forward to covering this topic in even greater detail.
Reference
- “The Strength of 3D-Printed Electronics,” nScrypt Inc.