Showa Denko’s Materials' PWB Adopted for World's Top Supercomputer


Reading time ( words)

Showa Denko Materials Co., Ltd. is pleased to announce that "MCL-LW-900G/910G," a low transmission loss printed wiring board material developed by the company, has been adopted for the printed wiring boards mounted on the central processing units (CPU) of the supercomputer "Fugaku," currently under joint development by the RIKEN and Fujitsu Limited.

The world's No.1 supercomputer known as "Fugaku" aims to deliver up to 100 times the application execution performance of its predecessor, "K computer" that began operating in 2012, while minimizing its power consumption (30-40 MW) roughly three times that of "K computer" (12.7 MW). "Fugaku" is expected to play a major role in various fields, including COVID-19 research, artificial intelligence (AI) applications, and big data analysis.

To combine superlative computing speed and power-saving performance of "Fugaku," higher speed communication, larger data volumes, and higher frequency electric signals are required for printed wiring boards. However, to provide these capabilities, it is essential to reduce transmission signal attenuation (transmission loss) and signal delay within the boards. Halogen-free material is also an important requirement to reduce environmental impact.

Showa Denko Materials developed "MCL-LW-900G/910G" as a halogen-free printed wiring board material capable of reducing transmission loss and signal delay by optimizing resin composition ratio and applying low dielectric*2 glass cloth. This material is excellent for drilling holes and is applicable to laser drilling fine holes. It also effectively reduces the price of high layer count printed wiring boards as the material can be laminated collectively in a hybrid configuration with halogen-free FR4 (a general-purpose glass cloth base material) with different glass transition temperatures (Tg).*3

As a material for the supercomputer "Fugaku," "MCL-LW-900G/910G" has been well-received for its properties such as low dielectric constant*4 (Dk) and dielectric loss tangent*5 (Df) related to transmission loss and signal delay, as well as insulation reliability*6 (CAF resistance) and desmear treatment*7 (desmear solubility) which improve printed wiring board production yields and ensure stable production.

Showa Denko Materials will work to further optimize the resin composition ratios and use lower dielectric glass cloth to launch mass production of printed wiring board materials focused on low transmission loss. with a view to applying these materials to fifth-generation (5G) and sixth-generation (6G) mobile communication systems providing even higher speed, higher capacity, lower latency, and multiple connections.

Share

Print


Suggested Items

Materials for Automotive Applications: Thermal Management Issues

07/02/2020 | Pete Starkey, I-Connect007
For Pete Starkey, the highlight of the recent HDP User Group Automotive Technology Webinar was Alun Morgan’s presentation on materials for automotive applications. This forward-looking informational session covered the latest developments in automotive standards and automotive electronic packaging.

The iNEMI 2019 Roadmap: Flexible Hybrid Electronics

06/04/2020 | Pete Starkey, I-Connect007
The emerging trend for “electronics on everything, everything with electronics” was the theme of iNEMI’s webinar presentation of the highlights of its recently published Flexible Hybrid Electronics Roadmap Chapter, delivered by Girish Wable, senior engineering services manager with Jabil. Pete Starkey provides an overview.

3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?

05/28/2020 | Dan Feinberg, I-Connect007
Recently, Dan Feinberg was invited to attend a detailed and broadly informative webinar by nScrypt titled “The Strength of 3D-Printed Electronics," which covered the status and advances in the use of 3D printing for electronic device design and manufacture. nScrypt is an Orlando-based company founded in 2002 that focuses on 3D printing. Here’s what Dan learned from each of the speakers.



Copyright © 2020 I-Connect007. All rights reserved.