Thermal Management of High-Frequency PCBs


Reading time ( words)

Thermodynamics can be a difficult enough subject to understand. But when combined with high-frequency PCB design and fabrication, it can really get complicated. Thermal management of PCBs has received a lot of attention over the past few years and it will probably continue as new technology pushes the limits of this issue.

For simplicity purposes, we will only discuss two sources of heat generation. One source of heat on the PCB is an active device or chip generating heat. The other source occurs when RF power applied to the circuit causes the heat. Of course there can be a combination of these sources, but to keep this column simple, the individual sources will be addressed independently. And for simplicity, examples will be given for a double-sided (microstrip) circuit, with a heat sink attached to the ground plane side of the circuit.

The basic concept of thermodynamics related to PCBs is concerned with thermal conductivity, heat flow and thickness of the circuit. In the case of a double-sided circuit, the copper has extremely high (good) thermal conductivity, but the substrate is typically in the range of a thermal insulator with very low conductivity. Having a high heat flow is good for keeping the circuit cooler by more efficient heat transfer from the heat source to the heat sink. The heat sink is designed to dissipate the heat away from the circuit and is typically a large metal plate bonded to the PCB with some cooling functionality.

As mentioned, most substrates used in the high-frequency PCB industry have low thermal conductivity and are in the range of 0.2 to 0.3 W/m/K. A common tradeoff to improve heat flow and ultimately thermal management is to use a thinner substrate, which gives a shorter heat flow path and enables more efficient transfer of heat to the heat sink. If the heat source is a chip mounted on the circuit, this is sometimes helpful and often copper-plated vias are placed beneath the chip to act as thermal channels to the heat sink.

Read the full column here.


Editor's Note: This column originally appeared in the December 2013 issue of The PCB Design Magazine.

Share




Suggested Items

Optimizing Communication Between Fabricators and Designers

03/21/2023 | Andy Shaughnessy, Design007 Magazine
During DesignCon, I spoke with James Hofer from Accurate Circuit Engineering about some of his customers' biggest challenges. We discussed various ways to increase the level—and quality—of communication between designers and fabricators. James also offered some interesting observations about bridging the gap between designer and fabricator. How often do you communicate with your fabricator?

DFM 101: Final Finishes: OSP

03/09/2023 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. The next final finishes to discuss in this series is OSP. As with all surface finishes there are pros and cons with the decision of which to use. It is a combination of application, cost, and the properties of the finish. OSP is RoHS-compliant as there is zero lead content in the finish.

DFM 101: Final Finishes—HASL

02/14/2023 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. This article is the latest in a series that will discuss these cost drivers (from the PCB manufacturer's perspective) and the design decisions that will impact product reliability.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.