What is 4-Wire Kelvin?


Reading time ( words)

I’ve been asked many times, “What is 4-Wire Kelvin?” So, this month I will explain the 4-Wire Kelvin Test and how it can help uncover defects that normally would go undetected in standard electrical test methodology.

Most of us have used an ohmmeter to measure voltage, resistance, and current. The typical meter has two wires; you probe the two terminals, trace ends or put the leads in line with the circuit for measuring current. A standard ohmmeter is shown in Figure 1 below.

However, with this type of measurement, the resistance of the leads and contact are added to the measurement. In Figure 2 you can see that the two leads with 0.5 ohms of resistance are added to resistance of the resistor being measure and providing a final result of 2.0 ohms, where the expected reading would be 1.0 ohms.

4-Wire Kelvin

4-Wire Kelvin testing is a methodology where high resolution measurements are taken to determine finite changes in resistance. These finite changes in resistance can then be used to locate plating defects or variations in plating thickness. The Kelvin test is highly accurate because of a four terminal system that negates all current sources, lead and contact resistances. This allows for the finite measurements to only be measured on the PCB circuitry. Typically these measurements are in the milliohm range. Figure 3 shows the typical Kelvin circuit.

Now the question, “What can Kelvin detect?” In the PCB industry, the main focus of the Kelvin test is to identify plating defects in the drilled holes.  The higher the aspect ratio of the drilled hole the higher risk of defect. The defects shown in Figure 4 are typically what you will detect using 4-Wire Kelvin. Using standard electrical test with continuity thresholds at 10 ohms (IPC Class 3), these defects will go undetected as the change in resistance introduced by these defects will not cause enough change to fault at the 10 Ohm range. However, using the Kelvin test these changes in resistance will be detected as the changes although may be only 100 to 300 milliohms the high resolution measurement will fail.

Read the full column here.


Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.

Share

Print


Suggested Items

U.S. Tax Law Boosts Growth, But Uncertainties Loom

04/17/2019 | Chris Mitchell, IPC VP, Global Government Relations
Monday, April 15 was the deadline for millions of Americans to file their income tax returns, so this is a good time to review the Tax Cuts and Jobs Act of 2017 (TCJA) as well as the current tax policy landscape and how these rules are affecting the electronics industry.

Advance Your Company Through Automation

04/15/2019 | Patty Goldman, I-Connect007
At the recent IPC APEX EXPO 2019, Yash Sutariya discusses with Patty Goldman the labor shortage he has experienced in the Detroit area, the impact automation can have in the manufacturing process, and other strategies to advance your company.

Staying Current on Flex Manufacturing is Smart Business

04/04/2019 | Barry Matties, I-Connect007
Brendan Hogan, managing director of smart electronics manufacturer MivaTek Global, discusses how to better design for flex, and ways designers can stay current on manufacturing technology that can impact their flex boards.



Copyright © 2019 I-Connect007. All rights reserved.