Flex Circuit Shielding Design Options


Reading time ( words)

In December of 2014 I visited the Radiological Society of North America (RSNA) conference in Chicago. As you can imagine, MRI and X-ray equipment filled the convention center. Attending the show gave me the opportunity to speak to radiology designers. Since the equipment they are designing “radiates” with waves of electrons, the underlying electronics have to be super protected for fear of interference. When discussing flex designs, EMI and shielding circuits is the number one design concern.

Shielding may not be your company’s number one design concern when thinking about your interconnect designs. But if you have to shield circuits for EMI, then you will need to depend on your supplier to assist you with their favorite shielding technique and experience.

The Basics: What is EMI and Do Flex Circuits Radiate?

Electromagnetic radiation that adversely affects circuit performance is generally termed EMI, or electromagnetic interference. Many types of electronic circuits are susceptible to EMI and must be shielded to ensure proper performance. Conversely, emissions radiating from sources inside electronic equipment may threaten circuits within the same or nearby equipment.

To protect the performance integrity of electronic equipment, electromagnetic emissions from commercial equipment must not exceed levels set by the FCC, VDE and other organizations. Shielding requirements for commercial electronics generally range from 40–60 dB. Finding a system's overall shielding needs involves determining the radiated emission spectrum of the equipment, and the specifications the unit must meet (e.g. FCC Part 15).

And yes, flex circuits will radiate.

What is EMI shielding?

Shielding is the use of conductive materials to reduce radiated EMI by reflection and/or absorption. Shielding can be applied to different areas of the electronic package from equipment enclosures to individual circuit boards or devices. Effective placement of shielding causes an abrupt discontinuity in the path of electromagnetic waves. At low frequencies, most of the wave energy is reflected from a shield's surface, while a smaller portion is absorbed. At higher frequencies, absorption generally predominates. Shielding performance is a function of the properties and configuration of the shielding material (conductivity, permeability and thickness), the frequency, and distance from the source to the shield.

Flex shielding methodology

Shielding a flex circuit can be accomplished through multiple methods. Shields are designed and used for EMI and ESD considerations as well as signal integrity methodology. Here are some common and not so common practices for shielding a flex circuit.

  • Copper-clad—adding additional copper layers to the circuit—the least flexible method.

Fig1.JPG 

 

Figure 1: Very thick outside copper layers supressing radiation.

  • Copper cross hatch—adding additional copper layers and etching them to create a cross hatch design which allows more flexibility than standard copper-clad layers. Benefit: More flexible than pure copper layers.

Fig2.JPG

Figure 2: Outer layer cross hatch for EMI suppression. Benefit: More flexible than pure copper layers.

  • Silver paste/epoxy—achieved by applying a conductive paste over the outer layers of a circuit. The Kapton® covercoat has holes. Silver paste is sprayed on the covercoat and the silver paste drains down the holes and makes contact with the copper ground inside the circuit. This technique allows a slightly more flexible design than the copper-clad solution mentioned above. Benefit: More flexible. Downside: higher cost.

Share




Suggested Items

Surveying the Fab Landscape: Where to Find ROI

06/01/2022 | I-Connect007 Editorial Team
Torsten Reckert and the team at all4-PCB have a uniquely broad view of what’s happening in the industry. When we asked Reckert about the hottest areas for return on investment, his answers were insightful and sometimes surprising. Readers will note that this conversation includes multiple references to Alex Stepinski and his approach to developing paradigm-shifting processes at GreenSource Fabrication LLC. Reckert worked closely with Stepinski during his time at GreenSource, and just as Reckert is an expert on the current market, Stepiniski is a thought leader on how to optimize processes, making his mention in a return-on-investment conversation particularly valuable.

Technica Heats Up ROI Discussion

05/17/2022 | I-Connect007 Editorial Team
The I-Connect007 Editorial Team speaks with Technica’s Frank Medina, Ed Carrigan, and Jason Perry about trending hotspots that provide the PCB fabricator a high return on investment (ROI). A theme that carries throughout the conversation is that traditional methods for calculating ROI are being replaced by models that include more qualitative factors.

PCB Technologies’ InPack to Focus on Miniaturization, Packaging

05/16/2022 | Andy Shaughnessy, Design007 Magazine
I recently spoke with PCB Technologies’ Jeff De Serrano, Yaniv Maydar, and Alon Menache about their new venture, InPack. They explain their plans to focus on advanced packaging, miniaturization, and other high-end technology, with much faster time to market, and they offer a view of the global market as well.



Copyright © 2022 I-Connect007. All rights reserved.