The Pulse: Fake Fudged Facts—Using Software to Get the Right High-Speed Answer

In the science of high-speed signalling, the signals obey the laws of physics, so when a design won’t work or meet a specification, no amount of psychological persuasion will smooth the signal’s path from source to load. Wouldn’t life be different if speaking nicely (or shouting) at an underperforming circuit would spring it to life? (Though the application of warm air to drive out moisture can help, as long as it’s dry, hot air.)

Feedback Facts
I’m not referring to electrical feedback, but process feedback. PCB fabricators will look at process measurements and adjust process parameters to optimise yields; this saves cost and time, and produces a better product for lower material cost over time. Trace width dielectric separation, glass-to-resin ratios, datasheet values, and measurements can all go into the mix when feeding back production measurement values to tailor transmission line characteristics to get better yields on the next build.

Why the mention of this sugary sweet yet addictive substance? Sometimes the feedback from measurement doesn’t correlate as expected; there is always a good reason for this, but until you know the root cause it can be tempting to “what if?” a hard-to-measure parameter from the datasheet that wasn’t correct. Then the temptation is to “fudge” the results of the correlation by adjusting said tricky-to-measure parameter. Perhaps a more professional term would be to apply “goal seeking” or “empirical” correction. But this comes with a warning, as often noted by Polar’s signal integrity product manager Neil Chamberlain, “Occasionally a little fudge tastes very good, but too much fudge can make you feel quite ill.” The same is true with measurement correlation. Goal seeking—“fudging”—the results can actually be a very powerful tool, provided you have a good enough knowledge of the physics and the range over which goal seeking is reasonable.

How Much is Reasonable?
Sometimes a process engineer with an impedance correlation problem will microsection and find an inexplicable variation between the modelled and measured value of characteristic impedance. A microsection or two is all it takes to confirm geometries of the line and the dielectric separation of the planes. So, the temptation to enforce correlation is to take the only electrical characteristic that’s not easy to measure and “goal seek it” to the correct value; that mystery characteristic is the dielectric constant.

Our technical staff has uncovered situations where the “goal seeking” of dielectric constant, commonly called Er, has gone way beyond the realistic limits of Er for a given material. Why should that be? Well, Er value could be part of the correlation but more often there are several parameters, each having leverage over the gap between measured and modelled. If a PCB fabricator goal-seeks outside of these limits, their customer may well raise eyebrows that the figure landed on is unachievable.

I have some personal experience with fabricators who are maybe new to the fabrication of transmission lines, goal seeking an Er of less than 2.0 on an FR-4 stripline. Given that the resin has an Er of 3.0 or thereabouts, and the glass of 6.0, then no amount of excess resin or resin starvation in FR-4 will get anywhere near 2, which is the Er of a pure PTFE material. It is also worth recalling that ZO varies as 1/sq. root Er, so relatively large changes are needed in Er to effect small changes in modelled impedance. Line width and dielectric separation have a much larger effect.

Whilst on the subject of dielectric constant, many PCB engineers who may not have an electrical background obsess over Er at frequency. It’s a bit trickier to measure Er than ZO, but once you have a suitable coupon and the correct tools (in this case, a short line, long line coupon with Polar Atlas software driving an Anritsu VectorStar VNA), you can use the phase delay per unit length to get a very accurate measurement of transmission line effective Er vs frequency. In Figure 1, you can see that above 1 GHz or so, the variation is absolutely minimal. Higher-loss substrates will see more variation, but surprisingly less than you expect.

Gaudion_Fig1_cap (1).jpg
Historically, with wider trace transmission lines, TDR measurement of impedance was a simple exercise of reading off the impedance from the TDR reflection, and the reflection over the whole coupon was flat. However, with fine lines, the traces exhibit an upward drift primarily from series resistance of the narrow trace. This upward drift must be removed by DC resistance compensation or launch point extrapolation before attempting correlation. Without correcting the ZO measurement for resistive effects, correlation will be poor, and if Er is used as a variable to correct the correlation then a false value for Er will be the result.

Whatever you are measuring or modelling it is important that you learn enough about the limits within the modelling tools’ operation, and the physical limits of the “invisible” properties of the materials in the sample under test. Without background knowledge and intuition based on the knowledge and the careful application of measurement and modelling it can be easy to be seduced into correcting the wrong variable.

This column originally appeared in the October 2021 issue of Design007 Magazine.



The Pulse: Fake Fudged Facts—Using Software to Get the Right High-Speed Answer


In the science of high-speed signalling, the signals obey the laws of physics, so when a design won’t work or meet a specification, no amount of psychological persuasion will smooth the signals path from source to load. Wouldn’t life be different if by speaking nicely—or shouting—at an underperforming circuit that it springs to life.

View Story

The Pulse: PCB Design Education—What ‘They’ Don’t Tell You


For a new designer entering this space for the first time it can be quite an eye opener (no wordplay intended) to discover just how many different disciplines are involved in turning a good design into a fit for purpose PCB.

View Story

The Pulse: Simulating Stackup and Signal Integrity


Civil engineer Isambard Kingdom Brunel set a high bar for simulation and modelling—to reduce the number of prototypes and predict the safety margins for structural loads.

View Story


The Pulse: Don’t Ignore DC Trace Resistance


Time flies! But the laws of physics don’t. Martyn Gaudion focuses on how important it is becoming to take DC trace resistance into account when measuring and specifying thin copper traces.

View Story

The Pulse: Application Notes—Advice for Authors


Application notes are the key to shedding light on new topics or new products and software tools in an easily digestible form. As both a consumer and an author many application notes, Martyn Gaudion explores various types and how to approach them.

View Story

The Pulse: Communicating Materials From Design to PCB Fabrication


Designer and fabricator communication—especially for high-speed PCBs—should be a bidirectional “thing.” It is so easy for a designer to say, “Just build this,” and hand over a challenging design to a fabricator who could have performed better with some preliminary conversation or dialog before placing the order. Martyn Gaudion explores communicating materials from PCB design to fabrication.

View Story


The Pulse: Modelled, Measured, Mindful—Closing the SI Loop


In this woolly world where high-speed signals enter a transmission line with a well-defined shape and emerge at the receiving end eroded and distorted—and at the limits of interpretation by the receiver—it is well worth running simulation to look at the various levers that can be figuratively pulled to help the pulse arrive in a reasonable shape. At speeds up to 2 or 3 GHz, it usually suffices to ensure the transmission line impedance matches the driver and receiver. And a field solver makes light work of the calculation. But push the frequency higher, and other factors come into play.

View Story


The Pulse: The Rough Road to Revelation


Several years ago, an unsuspecting French yachtsman moored his yacht to the railings of the local harbour. For a very nervous full tide cycle, he awaited to see if the cleats would pull out of the glass fiber hull. Fortunately, the glass held. A yachtsman at high tide isn’t too worried about whether the seabed is rough or smooth, but at low tide, the concern about a sandy or rocky seabed is altogether different. With PCBs, the move to low-loss laminates exposes a similar situation.

View Story


The Pulse: Tangential Thoughts--Loss Tangent Values


Numbers are fascinating things, and the way they are presented can influence our thinking far more than we would like to admit, with $15.99 seeming like a much better deal than $16. Likewise, a salary of $60,000 sounds better than one of $0.061 million, even though the latter is a larger number. Our brain has been programmed to suppress the importance of numbers to the right of the decimal point. Such is the case with the loss tangent of materials. It is a tiny number and so to our minds looks insignificant, but it has a directly proportional effect on the energy loss suffered by a dielectric.

View Story


Vias, Modeling, and Signal Integrity


Remember that good modeling can’t fix a bad design. The model can tell you where a design is weak, but if you have committed your design to product, the model can only tell you how it behaves. Some less experienced designers seem to think a better model will fix something that doesn’t work; it won’t. It will only reassure you that the design was bad in the first place.

View Story


Impedance Control, Revisited


The positives for new fabricators and designers lie in the fact that, even though impedance control may be new to them, there is a wealth of information available. Some of this information is common sense and some is a little counterintuitive. So, this month I’d like to go back to the fundamentals, and even if you are an experienced hand at the subject, it can be worth revisiting the basics from time to time.

View Story

I3: Incident, Instantaneous, Impedance


In my December 2013 column, I discussed “rooting out the root cause” and how sometimes, the real root cause is hidden when digging for the solution to a problem. In that column, I described how sometimes in an attempt to better correlate measured impedance with modelled impedance, fabricators were tempted to “goal seek” the dielectric constant to reduce the gap between predicted and measured impedance.

View Story


Tolerant of Tolerance?


Wouldn’t life be great if everything fit together perfectly? There would be no need for tolerance. However, for that to be the case, everything would need to be ideal and without variation...

View Story


Rooting Out the Root Cause


When your measured trace impedance is significantly different from the calculated/modeled trace impedance, be careful before jumping to conclusions.

View Story

Changing, Yet Changeless


Like the whack-a-mole game where the moles keep popping up at random after being knocked back into their holes, the same old questions about technical hurdles surrounding signal integrity continue to surface as technology advances.

View Story


Repeatability, Reproducibility and Rising Frequency: The R3 Predicament


One of the more popular editions of The Pulse in 2011 was the article "Transmission Lines - a Voyage From DC." Starting again from DC and working through the frequency bands, Martyn Gaudion looks at what is realistic to achieve and where economic compromises may need to be made.

View Story


Transmission Lines – a Voyage From Dc – No, Not Washington ...Part 2


In the second part of this two-part article we continue on our voyage through a transmission line from DC onwards and upwards through the frequency spectrum, step by step exploring the characteristics from very low to ultra high frequencies.

View Story

Transmission Lines – a Voyage From DC – No, Not Washington, Part 1


In this two-part article I'd like to join you on a voyage through a transmission line from DC onwards and upwards through the frequency spectrum. In Part 1 we trace the impedance from infinity at DC to the GHz region where it reaches the steady state value of its characteristic impedance.

View Story

Crosshatching Compromise


Sometimes engineering results in some uncomfortable compromises; this is often the case with PCBs as the mathematical methods used by the modelling tools are based on "ideal" physical properties of materials rather than the actual physical materials in use.

View Story

Correlation, Communication, Calibration


At ElectroTest Expo at Bletchley Park, UK, Martyn Gaudion noticed the extent to which some technologies change, while the overall concepts do not. Prospective customers still ask exactly the same questions as they did 50 years ago: “What’s the bandwidth? Will it work in my application? How accurate?” Followed by the predictable, “How much does it cost?”

View Story

When Is a 10ghz Transmission Line Not a 10ghz Transmission Line?


'Just as in life, in electronics the only certainty is uncertainty.' -- John Allen Paulos

View Story

Regional Differences – a Voyage of Glass Reinforcement


Why bulk Er is not the same as local Er

View Story


The Pulse: Laminates Losses and Line Length, Part II


In the last edition of "The Pulse," we began a discussion on how a modern field solver can help choose the most cost-effective material for a high-frequency application. Last month we looked briefly at the effects of line length and dielectric losses and this month we focus on copper losses; all three are primary drivers for losses.

View Story

The Pulse: Laminates Losses and Line Length, Part I


The EE creating the "platform spec" and the PCB fabricator responsible for its realisation face an array of materials with a mix of choices: From ease of processing to reliability requirements and signal integrity. For then next two months, "The Pulse" will focus on signal integrity, describing how to use field solvers to select the best materials when trading cost versus SI performance.

View Story

Signal Integrity – the ‘S’ Words


Three words, or rather, phrases are in the process of entering the vernacular of the PCB industry, albeit one phrase is already familiar, but taking on a different meaning. All start with S and all relate in one way or another to signal integrity.

View Story

All Set to Measure Differential Insertion Loss?


This column discusses the gradual adaptation necessary for PCB fabricators as more and more silicon families drive the industry toward the requirement for in house measurement of insertion loss.

View Story

Zen and the Art of Accurate Impedance Measurement* – With Apologies to Prisi


In his 1974 philosophical novel "Zen and the art of Motorcycle maintenance” Robert M. Prisig contrasts his regular and ongoing daily approach to motorcycle maintenance with his friend's alternate view of leaving well alone between annual service center based maintenance. What has this got to do with accurate impedance measurement you may ask? Please read on to discover more…

View Story

New Column: The Pulse


Polar Instruments CEO Martyn Gaudion will be exploring a number of themes. A major SI topic that is set to grow is the emergence of new silicon families designed to push traditional materials into the multi-gigahertz arena. These new chipsets lift transmission speeds up to a point where signal losses rather than reflections become the predominant concern from an SI perspective.

View Story
Copyright © 2022 I-Connect007. All rights reserved.