Flex Talk: Mina—Trouble-Free Soldering to Aluminum


Reading time ( words)

I always love to hear about interesting new IoT applications. The other day, a friend was explaining a new product he had recently developed, a home-built RFID-based tracking algorithm used to help improve and change how conferences and events are done around the world. Essentially, this tracking system—enabled by RFID tags and card readers—allows event organizers to analyze attendees’ preferences and interests and create personalized recommendations on topics, somewhat like a Netflix recommendation engine. Thinking about the RFID market and the significant growth projected in this market, I decided to do a little research on RFID tag manufacturing. During this research, I learned of a relatively new offering, Mina, an advanced surface treatment technology that addresses the common constraints of large scale manufacturing of Al-PET circuits.

Aluminum on polyester (Al-PET) circuits are becoming more popular and have found wide use in RFID tag and single-layer circuits to reduce cost. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder to at lower temperatures and PET cannot withstand high temperatures. Conventional low-temperature solder cannot be used to attach components to these circuits without additional processing or using conductive epoxies. These add costs, which limit the use of Al-PET circuits. Initially developed to help a customer with a manufacturing cost issue, Averatek has recently developed Mina, which can be applied to the antenna as it is being manufactured on high-speed roll-to-roll lines. The antenna can then be sent to customers who assemble the die and then on to the tag makers. This relatively new surface treatment paves the way for large scale, low cost manufacturing of Al-PET circuits.

Conventional Methods to Assemble RFIDs

Assembly of RFID tags involves mounting of chips onto the pads of the circuit. Although the use of solder is preferred, soldering to aluminum is difficult because of the presence of a thin layer of aluminum oxide. This layer forms when the bare metal is exposed to air. Since the manufacturing of Al-PET substrates is done in atmospheric conditions, all aluminum surfaces are covered with aluminum oxide. While the formation of oxide is self-limiting, its presence prevents the bonding of solder to the base aluminum. 

Special processing can be done on pads to remove and prevent the formation of aluminum oxide. These include ENIG, nickel-palladium or nickel-silver plating. These need a series of process steps and extensive wet chemistry, which add costs that make it prohibitive for mass production. 

Anisotropic conductive paste (ACP) is a common solution to this problem and is widely used for attaching components to aluminum based RFIDs. It is applied on the face of the chip, which is then attached to the antenna using heat and pressure. However, ACP has its own challenges. It is made of adhesive epoxy filled with conductive metal particles, usually silver. These are typically syringe applied, require longer cure times, have pot-life issues and are electrically inferior to conventional solders. In addition, they must be stored at low temperatures in special freezers to control the polymerization of the epoxy. 

Assembly of RFIDs with Mina

Evaluations began last November for Mina. This surface treatment can be printed directly on the aluminum pads where components need to be assembled. Any of the conventional printing techniques can be used including screen, stencil, etc. The aluminum surface does not need any surface cleaning or preparation. Once printed, it is then thermally cured and leaves the pad surface active and ready to accept solder. Cured Mina is non-conductive and makes room for easy printing registration. To attach a component, it simply would need solder on it via plated bumps or printing, placed on a Mina activated pad, and then passed through a re-flow oven. Mina removes the aluminum oxide layer and allows the formation of a true metal-to-metal bond between the solder and the aluminum on the pads.  Both the electrical properties and the bond strength are better than ACP. In addition, Mina can be stored at room temperature and reused multiple times. 

Dunn_Fig1.jpg 

Figure 1: Production and assembly process using Mina.

Dunn_Fig2.jpg 

Figure 2: Graphic of Mina application.

Benefits of Mina

  • Screen-printed on pads leaving an active, but non-conductive surface
  • Cost-effective as it allows the use of conventional solder and only on pads
  • Mina can be applied to the pads and cured in a conventional, low-temperature oven
  • Solder can be plated or printed on the chip using conventional methods and then reflowed onto the active pads
  • Enables solder to bond directly to aluminum metal, ensuring good electrical properties
  • Has no pot-life issues; Mina can be printed, stored and re-used at room temperature

Given the significant growth projected for the RFID tag market in the next several years, it will be interesting to see how this relatively new advanced surface treatment is adopted into mass production and to see what other markets benefit from enabling the ease of soldering to aluminum. 

 

Tara Dunn is the president of Omni PCB, a manufacturer’s rep firm specializing in the printed circuit board industry. To read past columns or to contact Dunn, click here.

Share




Suggested Items

EPTAC Primed for SMTA International

10/19/2022 | Andy Shaughnessy, I-Connect007
I recently spoke with Leo Lambert, vice president of technology for EPTAC, about the training company’s newest classes and his plans for the upcoming SMTA International. The event, co-located with the Medical Device & Manufacturing (MD&M) Show, takes place in Minneapolis Oct. 31—Nov. 3. It’s never a dull moment in this industry and Leo takes a few minutes to talk about his company’s certification efforts, what’s planned for SMTAI, and where some of this technology is headed. Swallowing a pill that measures diagnostics? It’s a great time to be in the industry.

Solder Paste Printing and Optimizations for Interconnecting Back Contact Cells

07/26/2022 | Narahari S Pujari and Krithika PM, MacDermid Alpha Electronics Solutions
The interdigitated back contact (IBC) is one of the methods to achieve rear contact solar cell interconnection. The contact and interconnection via rear side theoretically achieve higher efficiency by moving all the front contact grids to the rear side of the device. This results in all interconnection structures being located behind the cells, which brings two main advantages. First, there is no frontside shading of the cell by the interconnection ribbons, thus eliminating the need for trading off series resistance, losses for shading losses when using larger interconnection ribbons. Second, a more homogeneous looking frontside of the solar module enhances the aesthetics.

Book Excerpt: 'The Printed Circuit Assembler’s Guide to… Solder Defects'

06/07/2022 | I-Connect007 Editorial Team
Solder defects in surface-mount technology (SMT) assembly have been an issue for decades. Further, the combined challenges of Pb-free soldering and ever-increasing miniaturization have resulted in new or exacerbated defects in electronics assembly, but there are proven ways to avoid defects. This book will be especially beneficial to PCB assemblers in improving their assembly processes and the reliability of the end-product, eliminating field failures, and reducing costs.



Copyright © 2022 I-Connect007 | IPC Publishing Group Inc. All rights reserved.