NextFlex Project Offers Opportunity to Broaden Awareness of FHE


Reading time ( words)

NextFlex, America’s Flexible Hybrid Electronics (FHE) Manufacturing Institute, today announced it has successfully proven the robustness of the FHE manufacturing process, producing multiple functional samples of a flexible Arduino system. As part of the Flexible Arduino Microcontroller Project, NextFlex redesigned a device typically built on a rigid printed circuit board (PCB)—by printing and attaching thin bare die on a flexible substrate while maintaining the performance associated with traditional packaged ICs. This achievement ultimately helps realize FHE’s enormous potential for creating ubiquitous IoT and sensor products for consumer, commercial and military applications.

Arduino is an open-source, microcontroller-based electronics prototyping platform that utilizes versatile, easy-to-use hardware and software. As a result, Arduino has achieved a high degree of popularity with developers ranging from novices to seasoned experts because it is open source, with publicly available design files and bills of materials (BOMs), and low cost. Up until now, however, Arduino products have been built with traditional packaged die microcontrollers, which deliver high performance and functionality, but have design limitations (fragile, rigid, bulky), therefore complicating integration into newer sensor devices that may be flexible or curved in design.

AFRL NextFlex Flexible Hybrid Electronics Arduino FHE

NextFlex tackled this design challenge head on by developing a process flow for manufacturing a flexible Arduino that reduced the number of process steps by almost two thirds when compared with traditional electronics manufacturing processes. NextFlex replaced the traditional circuit board with a thin, flexible plastic sheet and used digital printing processes for circuit elements. Die attach of a thin bare die eliminated traditional microcontroller packaging while further enabling flexibility of the product. The new process translates to an anticipated savings in manufacturing time and cost, as well as a significant reduction in the end-product weight – the flexible Arduino is only a third of the weight of the rigid Arduino Mini board.

The NextFlex Arduino project’s sponsor is the United States Air Force Research Laboratory (AFRL); see announcement here. “The possibilities for FHE technology are virtually limitless,” said Dr. Benjamin Leever, the AFRL Advanced Development Team leader and NextFlex Government Chief Technology Officer. “Proving the manufacturability of this technology through an open-source platform will expand FHE’s reach even further by providing everyone from industrial product developers to high school students with the opportunity to innovate on new electronics concepts.” He added, “We are pleased to have teamed with NextFlex on this project and look forward to the next steps in the optimization process. This is truly a momentous achievement for the FHE community.”

Today’s announcement further underscores NextFlex’s mission to facilitate innovation through collaboration and promote sustainable manufacturing ecosystems. Noted NextFlex Director of Technology Jason Marsh, “Today’s breakthrough would not have been made possible without the tireless efforts, passion and teamwork among the NextFlex and AFRL teams. Being able to demonstrate the process manufacturability of a low-cost, easy-to-deploy and truly flexible platform gives everyone—and by that, I mean EVERYONE that feeds into the Arduino open source developer community—the ability to create and speed to market innovative new products that harness the power of FHE.”

NextFlex's San Jose-based open-innovation Technology Hub proved valuable in allowing NextFlex to integrate all the component steps to yield functioning samples. The Hub is the only single-source FHE processing production line in the U.S., and offers members access to state-of-the-art production equipment for proving new technology, developing new manufacturing processes, and testing new materials. NextFlex first demonstrated a sample flexible Arduino system last September during its annual Innovation Day, where Wilfried Bair, senior engineering manager for device integration and packaging at NextFlex, talked about the creation of the flexible Arduino.

At this week’s 2018FLEX Conference, which runs today through Thursday, February 15, in Monterey, Calif., NextFlex will demonstrate a working Arduino prototype in its booth #1001, and will also show an Arduino board plugged into a tester. According to NextFlex, the next stage will be to optimize each process step for consistent and repeatable process flow, and to conduct reliability testing to ensure the devices meet all usage requirements. To further stimulate interest in the uses for flexible technology, NextFlex CEO Malcolm Thompson will moderate an Applications Panel Discussion during 2018FLEX this afternoon from 4:00-5:30 p.m. More information on the panel can be found here.

About Flexible Hybrid Electronics

FHE gives everyday products the power of silicon ICs by combining them with new and unique printing processes and new materials. The result: lightweight, low-cost, flexible, conformable, stretchable, and highly efficient smart products with innumerable uses for consumer, commercial, and military applications.

About NextFlex

NextFlex, America’s Flexible Hybrid Electronics Manufacturing Institute, is a leading force in the Manufacturing USA network. Formed through a cooperative agreement between the U.S. Department of Defense and FlexTech Alliance, NextFlex is a consortium of companies, academic institutions, non-profits, and state, local, and federal governments with a shared goal of advancing U.S. manufacturing of FHE. Since its formation in 2015, NextFlex's elite team of thought leaders, educators, problem solvers, and manufacturers have come together to collectively facilitate innovation, narrow the manufacturing workforce gap, and promote sustainable manufacturing ecosystems. For more information, click here.

Share




Suggested Items

Review: Institute of Circuit Technology 2022 Annual Symposium

06/15/2022 | Pete Starkey, I-Connect007
The British Motor Museum in Warwickshire, housing the world's largest collection of historic British cars, was venue for the 2022 Annual Symposium of the Institute of Circuit Technology on June 8, which attracted a substantial gathering of manufacturers and suppliers from the UK printed circuit industry. ICT chair Emma Hudson reflected upon lessons learned during the pandemic lock-down and how the industry has successfully adapted to circumstances. She commented that the UK’s PCB fabricators are extremely busy, as she introduced an outstanding conference programme including a keynote from the incomparable Happy Holden.

I-Connect007 Editor’s Choice: Five Must-Reads for the Week

05/20/2022 | Andy Shaughnessy, I-Connect007
This week, we bring you an article about manufacturing training for veterans, and a review of a great signal integrity webinar. IPC honors its A-Teams with the coveted Golden Gnome Awards, and Technica discusses various ways for fabricators to increase ROI. Dan Beaulieu has a review of a really cool book: Back to Human—How Great Leaders Create Connection in the Age of Isolation. In spite of all the meetings on Teams and Zoom, it’s easy to feel disconnected. But great leaders find a way to foster that connectivity.

I-Connect007 Editor’s Choice: Five Must-Reads for the Week

05/13/2022 | Nolan Johnson, I-Connect007
The big news in the industry this week was the new bill introduced to the U.S. Congress in support of the PCB manufacturing industry. The Supporting American Printed Circuit Boards Act of 2022, which was introduced by Reps. Anna Eshoo (D-CA) and Blake Moore (R-UT), incentivizes “purchases of domestically produced PCBs as well as industry investments in factories, equipment, workforce training, and research and development.” The bill is a PCB-oriented complement to the semiconductor-oriented CHIPS Act of 2021.



Copyright © 2022 I-Connect007. All rights reserved.