AT&S Offers Interconnection Tech for Next-Generation 5G Mobile Communications


Reading time ( words)

Significantly higher data rates and volumes together with high power densities are resulting in rising requirements for interconnection technologies, too. The new 5G mobile communications generation is undoubtedly an overarching and defining trend here, with applications ranging from infrastructure (base stations) to terminal devices (mobile phones), as well as real-time automation scenarios. AT&S is supporting the current roll-out of the 5G mobile communications generation with high frequency (HF) optimized interconnect solutions and will continue to offer corresponding solutions as the new standard develops.

The launch of the 5G mobile communications generation has far-reaching consequences on the product and system level in terms of miniaturization, functional integration, electromagnetic compatibility (EMC), signal integrity, modularity, safety, security, etc. AT&S therefore analyzed customer requirements and implications for the PCB, substrate and packaging, then initiated and implemented appropriate developments. Innovative solution concepts respond to the challenges of 5G, e.g. using new materials, combining different technologies for hybrid PCB structures, and embedding passive and active circuit components. AT&S invested not only in processes and materials, but also in essential HF measurement equipment to investigate transmission losses, phase shifts and signal delays at up to 100 GHz, for example.

The roll-out of the new 5G mobile communications generation, with frequency bands up to 6 GHz, is already underway. The next step will be to implement 5G millimeter waves with frequencies of 28 GHz or even higher. In principle, for an interconnection technology manufacturer like AT&S, this means reducing signal losses and interference, e.g. by optimizing the dielectric layer in respect of the material (dielectric constant) or thickness, the material transitions (interfaces), or also the copper roughness.

With copper, the major challenge is that while smoother copper offers advantages for HF applications, somewhat greater roughness improves the adhesion of the PCB traces on the basic material. For this reason, AT&S conducted an extensive study of commercially available copper foils for HF applications. The geometry (profile) of the tracks also affects signal delays at higher frequencies and has to be optimized. In addition, AT&S investigated the effects between different metals (copper, gold, nickel) on the skin effect in the GHz range and is developing new surface materials accordingly to get optimized results.

For 5G applications, a hybrid PCB structure combining high-speed layers (HF-optimized) and standard layers represents a performance and cost-optimized solution. AT&S has created a 12-layer hybrid board (HF and FR4 in 2.5D technology) for wireless systems with fully integrated HF antenna. The layers are connected by micro-vias (filled and stacked). Another exemplary HF-optimized solution is a 6-layer board that combines HF layers having a very low dielectric constant with embedded components (application-specific integrated circuits (ASICs) under the antenna structure). The connection between ASICs and antenna is formed by laser-vias.

About AT&S Austria Technologie & Systemtechnik Aktiengesellschaft - First choice for advanced applications

AT&S is the European market leader and one of the globally leading manufacturers of high-end printed circuit boards and IC substrates. AT&S industrialises leading-edge technologies for its core business segments Mobile Devices, Automotive, Industrial and Medical. As an international growth enterprise, AT&S has a global presence with production sites in Austria (Leoben, Fehring) and plants in India (Nanjangud), China (Shanghai, Chongqing) and Korea (Ansan near Seoul). The company employed an average of around 10'000 people in the financial year 2017/18. For further information click here.

Share

Print


Suggested Items

Solder Mask Curing: UV Bump Overview

08/19/2019 | Nikolaus Schubkegel
Ultraviolet (UV) bump, also called UV cure, is a processing step in which the solder mask pattern is irradiated with ultraviolet and infrared light. This step is performed with special equipment that is built as a continuous flow system, which consists of a conveyor belt and tubular UV lamps mounted above and below the belt. Read on to find out more about this process.

Avoiding CAF Failures at the IPC High-reliability Forum

12/31/1969 | Andy Shaughnessy, I-Connect007
Foresite CEO Terry Munson recently spoke with Andy Shaughnessy during the IPC High-Reliability Forum and Microvia Summit in Baltimore about his presentation on the causes of conductive anodic filament (CAF), the dangers of resin starvation, and what advice he'd give to PCB designers to avoid those types of failures.

A Guide to High-reliability PCBs from Design to Specification

07/24/2019 | Jeff Beauchamp, NCAB Group
Creating reliable PCBs is an outcome of considering all aspects that can affect reliability as early as possible in the design process. The further down the design process, the more expensive and risky it can be to fix. As they say, everything starts with the design. Because a good board design improves the reliability of the end product and lessens the risk of failure.



Copyright © 2019 I-Connect007. All rights reserved.