Study on Application of Four-Wire and Four-Terminal Flying Probe Test Scheme


Reading time ( words)

The Problem                                                                  

The traditional electrical performance conduction test is to determine the open/short circuit by the on-resistance. For example, it is generally set to 20 ohms (Ω). When the entire measured line is less than 20Ω, the line-to-line continuity of the tested line can be determined to meet the requirements. However, in actual production, some defects of the PCB circuit board, such as voids in the holes, thin copper, hole copper, and separation of the innerlayers, will affect the resistance of the circuit. The above defective boards are tested by ordinary conduction tests. The results showed that PASS, after welding or application environment changes, the line resistance will change, and even lead to open circuit. These problems will inevitably have great impact on product quality. 

The Problem Analysis

The traditional electrical performance test uses the four-wire two-terminal test principle. It is impossible to measure the actual resistance of the circuit accurately. The tested resistance value includes the test pin, wire and contact resistance (R1, R2), as shown in Figure 1.

JinFig1.jpg

Figure 1: Traditional electrical performance test.

How can we more accurately test the resistance of the circuit under test, especially when the resistance of the circuit under test is in the order of milliohm, the test pin, wire and contact resistance cannot be omitted, and four-wire and four-terminal test must be used?

Four-Wire and Four-Terminal Test

Introduction

The four-wire and four-terminal test passes two pins on each test point, so that the test current and the measured voltage do not affect each other, and the measured resistance can be accurately measured as R=U/I (Figure 2).

JinFig2.jpg

Figure 2: Four-wire, four-terminal test.

JinFig2a.jpg 

Figure 2a: Four-wire four-terminal test pin structure.

The four-wire test needle technical requirements are as follows:

  • The test needle blade is a pair of mirror structure, the tip error of the two blades is within 10 μm
  • Insulation must be done between the two blades, and no contact short-circuit condition can occur during the test
  • The distance between two blades must be controlled within 20 μm
  • Test needle pressure needs to be adjusted to 10g–25g

How to Conduct Effective Testing

For hole breakage, voids, and insufficient hole copper thickness, the hole-to-hole test method is required. The test points are mainly set on both sides of the test hole. The test pins are placed on both ends of the hole. Theoretical values ​​calculate the resistance of the hole and set the test setpoint for each hole directly, as in the calculation shown in Figure 3.

D = bore diameter
h = thickness of copper plating
d = hollow section diameter
L = depth of hole or plate thickness

JinFig3.jpg 

Figure 3: Hole test schematic.

The formula, R=ρ.L/S, is the formula for calculating the conductor resistance. S is the cross-sectional area of ​​the conductor. The unit is the square meter, ρ is the resistivity of the conductor material, the unit is ohm·m2/meter, and the copper is at 20°C. The resistivity was 1.75 × 108 ohm·m2/m, and the cross-sectional area represented is S=π [(D/2) 2 – (d/2) 2 ] = 2.19121 × 108m2.

Based on the above data, we can conclude:

Plate thickness of 1.6 mm, aperture 0.3 mm, copper thickness of 1 mil through-hole,

R = 1.75 × 108 × 1.6×103 ÷ 2.19121 × 108 = 1.28 x 103 ohms, or 1.28 milliohms

Share




Suggested Items

EIPC Summer Conference 2022: Day 2 Review

06/29/2022 | Pete Starkey, I-Connect007
Örebro, Sweden on June 15 brought a bright and early start to Day 2 of the EIPC Summer Conference for those who had enjoyed the previous evening’s networking dinner, but had resisted the temptation to over-indulge or to carry on their long-awaited catch-up conversations with old friends into the small hours. All but a few were in their seats for 9 a.m., awake and attentive for Session 4 of the conference, on the theme of new process technologies, moderated by Martyn Gaudion, CEO of Polar Instruments.

Technica Heats Up ROI Discussion

05/17/2022 | I-Connect007 Editorial Team
The I-Connect007 Editorial Team speaks with Technica’s Frank Medina, Ed Carrigan, and Jason Perry about trending hotspots that provide the PCB fabricator a high return on investment (ROI). A theme that carries throughout the conversation is that traditional methods for calculating ROI are being replaced by models that include more qualitative factors.

EIPC Technical Snapshot: Supporting Autonomous Driving

05/12/2022 | Pete Starkey, I-Connect007
EIPC’s 17th Technical Snapshot webinar on May 4 focused on developments in automotive electronics, particularly on advances in the technologies required to support the evolution of autonomous driving. The team brought together two expert speakers to present their detailed views on topics encompassed within “CASE,” the acronym that appears to be taking over the automotive industry.



Copyright © 2022 I-Connect007. All rights reserved.