EM Modeling: The Impact of Copper Ground Pour on Loss and Impedance


Reading time ( words)

This article briefly introduces the general purposes of copper ground pour on printed circuit boards. Subsequently, the impact of copper ground pour on PCB channel loss in terms of insertion loss and impedance in terms of time domain reflectometry (TDR) is studied with electromagnetic modeling using Mentor HyperLynx.

Introduction

Copper ground pours are created by filling open, unpopulated, or unrouted areas on outer layers of the PCB with copper. Subsequently, copper fill is hooked up to ground planes on inner layers with stitching vias as depicted in Figure 1. Copper ground pours on outer layers provide extra shielding against electromagnetic radiation by signals on inner layers. Besides that, copper pour also serves as a heat sink for the voltage regulator module on PCBs. In terms of manufacturability, copper pour reduces the possibility of PCB warpage during reflow by balancing the amount of copper on each side of the PCB.

Yee-fig-1.jpgHowever, copper ground pour comes with some disadvantages, as there is a change in impedance of PCB trace adjacent to ground pour (i.e., impedance decreases when copper pour becomes closer to the PCB trace). As a result, the impedance mismatch contributes additional PCB loss to the transmission line at a high-frequency range.

Analysis and Results

To study the impact of copper pour on PCB channel loss in terms of insertion loss and impedance in terms of TDR, five models of 1” single-ended microstrip listed in Table 1 were created. The simulation topology is shown in Figure 2. For model 1A, a microstrip trace 5 mils wide and 1 oz. thick is laid out 2.65 mils above the reference plane insulated by low-loss dielectric substrate material. This trace is sandwiched between two ground traces on the same outer layer. The spacing between each adjacent ground trace and the signal trace is 1x the signal trace width. Meanwhile, the spacing between each ground and signal trace is set as 2x, 4x, 6x, and 8x for model 1B, 1C, 1D and 1E, respectively.

To read this entire article, which appeared in the April 2019 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Insulectro Works to Bridge the Fabricator/Designer Gap

12/19/2019 | Barry Matties, I-Connect007
Barry Matties sat down with Insulectro’s Megan Teta and Mike Creeden to discuss trends they see in the materials market and how they’re working to bridge the gap between fabrication and design, including helping designers understand what they can do to make a board more manufacturable.

Designing for Complex PCBs

12/12/2019 | I-Connect007 Editorial Team
The I-Connect007 editorial team sat down with Freedom CAD’s Scott Miller to talk about the industry’s demand for more increasingly complex PCBs, and the challenges this presents. They also discuss Freedom CAD’s in-house training programs, the company’s recent book authored by Scott, and why communication is such an important tool in a PCB designer’s toolbox.

AltiumLive Frankfurt 2019: Happy Holden Keynote

12/12/2019 | Pete Starkey, I-Connect007
Nobody left early! Altium had wisely kept Happy Holden’s keynote presentation on “PCB Trends that Will Impact Your Future” until the end of the final day of the AltiumLive 2019 European PCB Design Summit in Frankfurt, Germany. Pete Starkey presents the highlights of Happy's presentation.



Copyright © 2020 I-Connect007. All rights reserved.