Averatek on the Future of Additive and Semi-additive Processing


Reading time ( words)

Averatek’s President and COO Mike Vinson talks with Barry Matties about the benefits semi-additive and additive processing can bring to the shop floor as well as some of the current challenges and limitations that continue to leave many manufacturers hesitant to implement the technology.

Barry Matties: Can you tell us a little bit about your company?

Mike Vinson: Averatek was a spinoff of SRI International. We began about 12 years ago. For the last seven years, we’ve been focusing on circuits for the printed circuit board industry in a variety of ways. One of the ways is with semi-additive processing. We have a particular ink that allows us to make very thin copper layers that we can then build upon for semi-additive processing. We can go back and etch away the very thin copper that we put on initially, and then leave the traces behind with virtually no deformation in the trace itself. So, that enables very fine pitch and very fine lines for circuits.

Matties: Additive processing is a fast-growing trend. What’s the driver behind it?

Vinson: Yes, we’re seeing a lot of interest now for additive as well as semi-additive processing, mainly trying to get the finer lines with less processing steps. With the additive process, you’re not doing as much of the etching away. You don’t have the chemistries or the materials to dispose of after the etching process. You can also limit a lot of those steps, decrease the amount of time spent, and minimize the damage done in those steps.

Matties: We see companies printing circuit boards completely through additive. They start with a solution and wind up with the board. It’s a nice technology for rapid prototyping. If you want something, you design it in the morning and have it out by lunch. You can do this, but is this where we’re headed?

Vinson: Many of those printing processes have some gaps where they’re trying to get enough conductivity into the circuit to be usable in most electronic systems. There is a good market for those low-conductivity kinds of products. But beyond the rapid prototyping, there are only a few applications that can really take advantage of it. Perhaps for some of the areas in the military or space travel where they need rapid repair, that would be very advantageous. However, we’re seeing a need for more conductive circuits in very fine traces other than what a lot of printed technologies are bringing.

Matties: What’s the challenge for someone who wants to move into an additive process?

Vinson: There are a few, and it really depends on what your end product is going to be. If you’re trying for a more conventional product, the challenges are going to be in the equipment set and what you need to purchase to get into the additive process. With our process, it’s less of the equipment set and more of the advanced lithography technology to make the finer circuits that we provide for.

Matties: Can you describe your process and how it works?

Vinson: With our process, we’re putting down an extremely thin catalyst ink—one- or two-nanometer catalyst ink—that then we can build upon with a very dense electroless metallization. We can work with a variety of electroless metallizations—those that work well with the palladium catalysts. Then, we’ll put on an electroplated circuit that is defined by photolithographic methods, usually. We have a couple of other methods that are currently under development right now that I can’t go into too much detail on, but those should be able to take us down to the five-micron range.

Matties: What sort of growth do you expect to see in this market segment?

Vinson: Right now, it’s a little slow because it requires not only our capability but the rest of the infrastructure to grow along with it. People are hesitant because the current infrastructure doesn’t support everything that we can achieve. But there are a lot of leading-edge industries looking at our technology, and we’re seeing a lot of the mobile markets adapting roadmaps that will require our technology or technologies that can deliver what we deliver.

 To read the full article, which appeared in the April 2019 issue of PCB007 Magazine, click here.

Share

Print


Suggested Items

Dissecting the IPC Regional Survey on PCB Technology Trends

07/15/2019 | I-Connect007 Editorial Team
Sharon Starr, Denny Fritz, and Mike Carano talk about the global 2018 IPC Technology Trends Report released early this year—the size of the survey, how it was conducted, the general findings, and regional differences. They also shared their takeaways and regional insights, and the industry outlook over the next five to 10 years.

An Examination of Glass-fiber and Epoxy Interface Degradation in Printed Circuit Boards

07/12/2019 | Bhanu Sood, Michael Osterman, and Michael Pecht, Center for Advanced Life Cycle Engineering
Multilayer organic laminates, which make up over 90% of the interconnecting substrates in electronics (standard FR-4 represents 85% of the substrates used for laminates), can develop a loss of electrical insulation resistance between two biased conductors due to conductive filament formation.

PCB Reliability: Via Design

07/12/2019 | Greg Ziraldo, Advanced Assembly
When considering the long-term reliability of a PCB, you must take into account any vias on your board. While an invaluable and essential part of board design, vias introduce weaknesses and affect solderability. This article will discuss vias, the potential concerns that are introduced into your board through their implementation, and how to minimize those concerns to acceptable levels.



Copyright © 2019 I-Connect007. All rights reserved.