A Thin Ribbon of Flexible Electronics Can Monitor Health, Infrastructure


Reading time ( words)

flex_electronics.jpgA new world of flexible, bendable, even stretchable electronics is emerging from research labs to address a wide range of potentially game-changing uses. The common, rigid printed circuit board is slowly being replaced by a thin ribbon of resilient, high-performance electronics. Over the last few years, one team of chemists and materials scientists has begun exploring military applications in harsh environments for aircraft, explosive devices and even combatants themselves.

Researchers will provide an update on the latest technologies, as well as future research plans, at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world’s largest scientific society. The meeting takes place here through Thursday.

“Basically, we are using a hybrid technology that mixes traditional electronics with flexible, high-performance electronics and new 3-D printing technologies,” says Benjamin J. Leever, Ph.D., who is at the Air Force Research Laboratory at Wright-Patterson Air Force Base. “In some cases, we incorporate ‘inks,’ which are based on metals, polymers and organic materials, to tie the system together electronically. With our technology, we can take a razor-thin silicon integrated circuit, a few hundred nanometers thick, and place it on a flexible, bendable or even foldable, plastic-like substrate material,” he says.

To allow electronics to be bendable or stretchable or even change their configuration after fabrication, the Wright-Patterson team has turned to liquid gallium alloys as an electrical interconnect material, Leever says. “While these liquid alloys typically oxidize within minutes and become essentially useless,” he says, “the team has been able to dramatically reduce the effects of the oxidation through the use of ionic species confined to the walls of microvascular channels within the flexible substrates.”

The result is thin, foldable material that allows the circuitry to fit into extremely tight spaces and even to be integrated into complex curved surfaces, such as an airplane’s wing, or even a person’s skin.

In aircraft applications, Leever explains, the hybrid flexible system can be used to monitor stresses and strains and report this information through miniature embedded antennas to ground crews or a pilot.

The researchers also are developing the same approach to monitor pilots’ health. This involves a biosensor system that can measure heartbeat, hydration levels, sweat, temperature and other vital signs through miniature circuitry. The system would be embedded on a flexible, wearable patch and would include an antenna to transmit these biometric signals to the pilot or a ground team. The patch will “breathe,” bend and stretch, and will provide real-time measurements of metrics that indicate fatigue or potential cognitive problems, Leever notes.

Another military application the Air Force is pursuing is use of a flexible hybrid system in “bunker buster” bombs, which detonate after penetrating deep in the earth. Because of the system’s toughness, Leever says, initial testing suggests that the flexible circuitry would remain viable and could detonate the weapon after surviving the initial impact of ground contact after being dropped from aircraft.

In the civilian world, Leever foresees use of flexible systems to monitor the conditions of bridges and other types of infrastructure in real time. He also points to medical applications, such as physical feedback for athletes as they exercise and real-time hospital monitoring for caregivers concerned about changes in a patient’s vital signs. This type of monitoring dispenses with the need for the bulky electrodes and wiring that normally are associated with close medical surveillance.

“Overall, the military has the advantage of being able to move ahead with potentially higher risk research,” he explains. “Commercial investors want a clear demonstration before making an investment. The military can pursue possibly transformational applications at earlier stages if we see a promising approach to realize and advance a technology’s revolutionary potential. When we are successful, the commercial sector directly benefits.”

Leever adds that the Wright-Patterson team is part of a newly created Department of Defense-led Flexible Hybrid Electronics Manufacturing Innovation Institute, which was announced by President Barack Obama last December. Over the next five years, $75 million will be offered in matching grants to spur domestic development of flexible hybrid electronics manufacturing.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Share

Print


Suggested Items

Dissecting the IPC Regional Survey on PCB Technology Trends

07/15/2019 | I-Connect007 Editorial Team
Sharon Starr, Denny Fritz, and Mike Carano talk about the global 2018 IPC Technology Trends Report released early this year—the size of the survey, how it was conducted, the general findings, and regional differences. They also shared their takeaways and regional insights, and the industry outlook over the next five to 10 years.

Identifying Product Board Class and Pre-quote Software

07/09/2019 | Mark Thompson, CID, Prototron Circuits
Deciding on the class of the final product will determine what files are needed for fabrication and assembly. It is critical to note that for a product to be built to any class level, it must be designed to that class level from its inception.

Microtek Labs: Providing Trusted Testing in the Chinese Market

06/19/2019 | Barry Matties and Edy Yu, I-Connect007
On a recent visit to Microtek Laboratories' Changzhou facility, Barry Matties, publisher, and Edy Yu from the I-Connect007 China team spoke with chairman and CTO Bob Neves about the changes he has seen living and doing business in China over the past 15 years, and the increased importance of standards and testing as China moves into manufacturing more high-reliability products.



Copyright © 2019 I-Connect007. All rights reserved.