All About Flex: Flexible Circuit Fabrication and Cleanroom Manufacturing


Reading time ( words)

Facility cleanliness is a vital part of process control for flexible circuit fabricators. As higher density requirements continue a relentless drive toward finer traces and spaces, particles and foreign material can cause problems in a number of operations. A particle can cause conductor width and spacing issues at imaging. Conductive material can cause current leaking when trapped under a coverlay or embedded in solder mask. Dirt, dust, or other unintended material may reduce layer-to-layer adhesion. Engineering models suggest hair and fibers can affect insulation resistance and impedance. How big does a particle need to be to cause issues? Consider that typical outdoor ambient air has a normal distribution of particles that can be as small as 0.5 microns and as large as 16 microns. An ultra-high-density flexible circuit might get to 25 micron spacing.

Roughly speaking, one 7−8 micron particle could cause a conductor width and spacing quality criteria violation if it landed on coated resist, or on the  photo artwork, or is deposited directly on the photo-sensitive resist during image exposure. With circuitry at ultra-high density, particles in ambient air might cause issues, however, particle size is not the only factor. Quantity and/or density of particles is also a consideration. Ambient air contains 35 million particles per cubic meter, so in an uncontrolled environment, thousands of particles might easily be deposited in a small area. And even if particles don’t settle on material, they can refract collimated light sources that are often used during exposing for creating the circuit image.

These particles also accumulate on work surfaces and are a risk to contaminate in-process materials or operators. It is certainly fair to say the biggest source of contamination is not from ambient air, but the human operator. Human hair is approximately 60 microns in diameter and can be several millimeters in length or longer.

Read the full article here.

 

Editor's Note: This article originally appeared in the May 2016 issue of The PCB Magazine.

Share




Suggested Items

Knowledge: At the Heart of Great Customer Service

05/26/2023 | Barry Matties, I-Connect007
David Thomas, master IPC trainer at EPTAC, says that the more you understand the work and technology that go into your processes and products, the better you can serve your customers. That includes knowing the basics.

Chemical Legislation and Restrictions on Solder Masks

04/27/2023 | Chris Wall, technical director, Electra Polymers
Ever since liquid photoimageable solder masks (LPISMs) were introduced, their UV exposure speed has been a key factor in their performance. The LPISM is coated onto the PCB, dried, and then selectively exposed with UV light via a phototool, or more recently, via direct imaging using LED or lasers. The exposed areas polymerise and become insoluble in the developing solution. The polymerisation is initiated by one or more chemicals called photoinitiators, which are components of the LPISM.

ICT Seminar 2023 Review: Energy, Thermals, and Assistive Technology

03/16/2023 | Pete Starkey, I-Connect007
Widely believed to be the traditional Centre of England, Meriden was a popular venue for a gathering of the UK printed circuit community this month. They braved the forecast of heavy snow for the Institute of Circuit Technology’s annual general meeting to learn about current developments and challenges in a thought-provoking technical seminar and to network with industry peers and contemporaries. Thankfully, the forecasted heavy snowfall did not reach Meriden until after the event; we only had a few flurries, although the weather caused considerable disruption elsewhere in the country.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.