Thermal Capabilities of Solder Masks: How High Can We Go?


Reading time ( words)

Abstract

This article focuses on three different coating material groups that were formulated to operate under high thermal stress and are applied at the printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings looked at consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) are compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands placed on them. In this context, long-term storage tests as well as temperature cycling tests were carried out. Moreover, the effect of various copper pre-treatment methods on the adhesion of the solder masks was examined at 150, 175 and 200°C over the aging process. For this purpose, test panels were stored for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 hours. Within this test set-up it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, as compared to a pretreatment by brush or pumice brush. Breakdown voltage as well as tracking resistance were also studied.

For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LED are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These “ultra-white” and largely nonyellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications.

Introduction

The demands and loads placed on photoimageable solder masks rise to unknown new levels. Today’s solder masks are already exposed to a considerable level of thermal stress, high humidity and/or condensation. Especially in automotive electronics, the level specified for thermal resistance and thermal cycling resistance is constantly increasing. Due to higher currents and applications mounted in the engine compartment/gear box or close to the exhaust system, common photoimageable solder masks reach their performance limits. The thermal stress resulting from higher operating temperatures triggered the development of new solder masks or further development of existing solder masks. Here the level demanded by the industry in terms of permanent high temperature loads is typically 175°C.

To read the full version of this article which originally appeared in the July 2018 issue of PCB007 Magazine, click here.

Share

Print


Suggested Items

Benchmarking Your Process Engineering

04/29/2021 | I-Connect007 Editorial Team
Mark Thompson has been in bare board fabrication for over 30 years. He is now laying out printed circuit boards at Monsoon Solutions, a high-tech design bureau near Seattle, Washington. With Mark’s extensive hands-on knowledge of PCB manufacturing, he brings a unique perspective to PCB design. In this discussion with the I-Connect007 editorial team, Mark shares what’s important from a process engineer’s point of view, and how to stay on top of evaluating and benchmarking your manufacturing process, along with insights from his new role as a designer.

EIPC Technical Snapshot: 5G and Loss Minimisation

03/26/2021 | Pete Starkey, I-Connect007
Bringing a specialised technical area into sharp focus, this month’s topic was “5G and the understanding of loss minimisation at the PCB level,” with papers on dielectric material, copper foil, and modelling solutions. The webinar was moderated by EIPC board member Paul Waldner managing director of Multiline International Europa, who admitted that he had managed to get a haircut especially for the occasion!

PCB Requirements for E-Mobility

03/23/2021 | I-Connect007 Editorial Team
Nolan Johnson, Barry Matties, and Happy Holden speak with Christian Klein, section manager for PCBs in the automotive electronics division, about Bosch’s recent presentation on PCB requirements of the future in regard to automotive and electro mobility trends and challenges.



Copyright © 2021 I-Connect007. All rights reserved.