BGA Fanout Routing Overview


Reading time ( words)

PCB developers are deluged with new challenges caused by increasing density and smaller components. Ball grid arrays (BGAs) create particular challenges during layout, with hundreds of connections in just a few square centimeters. Fortunately, designers now have options for addressing these issues.

Fanout and Escape Routing

Because of the density and distance from the connection points, only the two outermost rows of a BGA can be connected directly to surface circuit traces. All other terminals of the BGA cannot be connected in a direct path on the surface.

Fanout and escape routing is integrated in many PCB design systems to enable further connections. In fanout and escape routing, the two outermost rows, and all other rows of a BGA, are automatically connected to the center of the terminals via a short circuit trace that is executed at a 45° angle. This provides a blind via that forms a direct connection to the next signal layer. Routing can be executed on the next signal layer.

Using via-in-pad eliminates the need for the additional trace to the center of the connections, thereby creating additional space for circuit traces. Therefore, with via-in-pad, the through contact can be placed directly at the terminal of the BGA.

During circuit board manufacturing, these through contacts will be filled with a non-conducting medium and cured. Later, the ends are metallized, planarized, and also over-contacted. This makes the surface of the via flat and can be used the contacts of the BGA. This solution can be used for both stacked and staggered microvias and/or blind vias. IPC-4761 describes how via-in-pads, for example filled and capped vias (IPC-4761 Type VII), are prepared. Despite the higher manufacturing costs, via in pads will always be preferred, because of the higher integration density of BGAs and their lower inductance at high frequencies (signal quality).

To read this entire article, which appeared in the August 2018 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

DFM 101: PCB Materials

04/30/2021 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is understanding the cost drivers in the PCB manufacturing process. This article is the first in a series that will discuss these cost drivers (from the PCB manufacturer’s perspective) and the design decisions that will impact product reliability.

John Watson Discusses His Favorite Career Moments

12/25/2020 | I-Connect007 Editorial Team
As we celebrate the holidays after a tumultuous year, it’s important to remember all of the good things in our lives. In this short video, Altium’s John Watson discusses a few of the moments that really stand out in his career: earning his IPC Certified Interconnect Designer credentials and designing his very first circuit board.

Flexible Circuit Technology Workshop #5 Tackles Structures, Applications, Materials, and Manufacturing Processes: Think and Plan in Three Dimensions!

10/01/2020 | I-Connect007 Editorial Team
In just 15 minutes, flex expert Joe Fjelstad will teach you about implementing this useful technology into your manufacturing operation. Joe suggests you start with defining your end-product requirements and understanding cost and product life cycle expectations, as well as end-user needs. He further addresses the many considerations with adopting this useful technology.



Copyright © 2021 I-Connect007. All rights reserved.